Endocytosed transferrin receptors recycle via distinct dynamin and phosphatidylinositol 3-kinase-dependent pathways.
نویسندگان
چکیده
Recycling of endocytosed membrane proteins involves passage through early endosomes and recycling endosomes. Previously, we demonstrated a role for clathrin-coated vesicles in transferrin receptor recycling. These clathrin-coated vesicles are formed from recycling endosomes in a process that was inhibited in dynamin-1(G273D)-overexpressing cells. Here we show a second transferrin recycling pathway, which requires phosphatidylinositol 3-kinase activity. Two unrelated phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, retained endocytosed transferrin in early endosomes but did not affect transfer through recycling endosomes. The inhibitory effects of LY294002 and dynamin-1(G273D) on transferrin recycling were additive. In combination with brefeldin A, a drug that prevents the formation of clathrin-coated buds at recycling endosomes, LY294002 inhibited transferrin recycling synergistically. Collectively, these data indicate two distinct recycling pathways. One pathway involves transfer from early endosomes to recycling endosomes, from where clathrin/dynamin-coated vesicles provide for further transport, whereas the other route bypasses recycling endosomes and requires phosphatidylinositol 3-kinase activity.
منابع مشابه
Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles.
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temper...
متن کاملDistinct Dynamin-dependent and -independent Mechanisms Target Structurally Homologous Dopamine Receptors to Different Endocytic Membranes
D1 and D2 dopamine receptors are structurally homologous G protein-coupled receptors that serve distinct physiological functions both in neurons and nonneural cell types. We have observed that these receptors are selectively endocytosed in HEK293 cells by distinct dynamin-dependent and -independent mechanisms. Although these endocytic mechanisms operate with similarly rapid kinetics, they diffe...
متن کاملWortmannin alters the transferrin receptor endocytic pathway in vivo and in vitro.
Treatment with the phosphatidylinositol 3-kinase inhibitor wortmannin promotes approximately 30% decrease in the steady-state number of cell-surface transferrin receptors. This effect is rapid and dose dependent, with maximal down-regulation elicited with 30 min of treatment and with an IC50 approximately 25 nM wortmannin. Wortmannin-treated cells display an increased endocytic rate constant fo...
متن کاملA novel endocytic recycling signal distinguishes biological responses of Trk neurotrophin receptors.
Endocytic trafficking of signaling receptors to alternate intracellular pathways has been shown to lead to diverse biological consequences. In this study, we report that two neurotrophin receptors (tropomyosin-related kinase TrkA and TrkB) traverse divergent endocytic pathways after binding to their respective ligands (nerve growth factor and brain-derived neurotrophic factor). We provide evide...
متن کاملMacrophage colony-stimulating factor differentially regulates low density lipoprotein and transferrin receptors.
Endocytosis mediated by both LDL receptors (LDLRs) and transferrin receptors (TfRs) occurs in clathrin-coated pits and requires specific tyrosine-based internalization sequences located in the cytoplasmic domain of these receptors. Internalization of these receptors is mediated by endocytic proteins that interact with the internalization domains. We previously showed that macrophage colony-stim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 50 شماره
صفحات -
تاریخ انتشار 2002